Lithium Intercalation in Core-Shell Materials–Theoretical Analysis

نویسندگان

  • Bharatkumar Suthar
  • Venkat R. Subramanian
چکیده

Core-shell composite structures are potential candidates for Li-ion battery electrodes as they can take advantage of materials with higher energy density and materials with higher cyclability. This paper derives an analytical solution for isotropic 1-dimensional diffusion with galvanostatic boundary condition in composite slab, cylinder and sphere using separation of variables method. A general interfacial condition has been used to represent the dynamics at the interface of the composite material rendering the solution useful for wide variety of battery materials. Using the derived analytical solution for diffusion, intercalation induced stresses were estimated for spherical core-shell materials. © 2014 The Electrochemical Society. [DOI: 10.1149/2.004405jes] All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Activity in Lithium-Treated Core−Shell MoOx/MoS2 Nanowires

Significant interest has grown in the development of earth-abundant and efficient catalytic materials for hydrogen generation. Layered transition metal dichalcogenides present opportunities for efficient electrocatalytic systems. Here, we report the modification of 1D MoOx/ MoS2 core−shell nanostructures by lithium intercalation and the corresponding changes in morphology, structure, and mechan...

متن کامل

Preparation of PPy-Coated MnO2 Hybrid Micromaterials and Their Improved Cyclic Performance as Anode for Lithium-Ion Batteries

MnO2@PPy core-shell micromaterials are prepared by chemical polymerization of pyrrole on the MnO2 surface. The polypyrrole (PPy) is formed as a homogeneous organic shell on the MnO2 surface. The thickness of PPy shell can be adjusted by the usage of pyrrole. The analysis of SEM, FT-IR, X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA), and XRD are used to confirm the for...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Core-shell CNT-Ni-Si nanowires as high performance anode material in lithium ion battery

Core-shell carbon nanotube (CNT)-Si heterogeneous nanowires have been identified as one of the most promising candidates for future anode materials in lithium ion batteries. However, stress in these nanostructures, is the long-existing bottleneck, rendering severe fading of the capacities and even failure of the batteries. We prove that the interfaces between CNT cores and Si shells play a crit...

متن کامل

Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents.

Rapid progress has been made in realizing battery electrode materials with high capacity and long-term cyclability in the past decade. However, low first-cycle Coulombic efficiency as a result of the formation of a solid electrolyte interphase and Li trapping at the anodes, remains unresolved. Here we report LixSi-Li2O core-shell nanoparticles as an excellent prelithiation reagent with high spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014